项亮
人民邮电出版社/微信读书 9787115281586
人民邮电出版社/微信读书 9787115281586
-
从某种意义上说,推荐系统和搜索引擎对于用户来说是两个互补的工具。搜索引擎满足了用户有明确目的时的主动查找需求,而推荐系统能够在用户没有明确目的的时候帮助他们发现感兴趣的新内容。
-
个性化推荐系统需要依赖用户的行为数据,因此一般都是作为一个应用存在于不同网站之中。在互联网的各类网站中都可以看到推荐系统的应用,而个性化推荐系统在这些网站中的主要作用是通过分析大量用户行为日志,给不同用户提供不同的个性化页面展示,来提高网站的点击率和转化率。
-
广泛利用推荐系统的领域包括电子商务、电影和视频、音乐、社交网络、阅读、基于位置的服务、个性化邮件和广告等。
-
亚马逊的前科学家Greg Linden在他的博客里曾经说过,在他离开亚马逊的时候,亚马逊至少有20%(之后的一篇博文则变更为35%)的销售来自于推荐算法。
-
亚马逊的前首席科学家Andreas Weigend在斯坦福曾经讲过一次推荐系统的课,据听他课的同学透露,亚马逊有20%~30%的销售来自于推荐系统。
-
至于推荐系统在Netflix中起到的作用,Netflix在宣传资料中宣称,有60%的用户是通过其推荐系统找到自己感兴趣的电影和视频的。
-
个性化阅读同样符合前面提出的需要个性化推荐的两个因素:首先,互联网上的文章非常多,用户面临信息过载的问题;其次,用户很多时候并没有必须看某篇具体文章的需求,他们只是想通过阅读特定领域的文章了解这些领域的动态。
-
基于用户行为分析的推荐算法是个性化推荐系统的重要算法,学术界一般将这种类型的算法称为协同过滤算法。顾名思义,协同过滤就是指用户可以齐心协力,通过不断地和网站互动,使自己的推荐列表能够不断过滤掉自己不感兴趣的物品,从而越来越满足自己的需求。
-
基于邻域的算法是推荐系统中最基本的算法,该算法不仅在学术界得到了深入研究,而且在业界得到了广泛应用。基于邻域的算法分为两大类,一类是基于用户的协同过滤算法,另一类是基于物品的协同过滤算法。
-
推荐系统需要由多个推荐引擎组成,每个推荐引擎负责一类特征和一种任务,而推荐系统的任务只是将推荐引擎的结果按照一定权重或者优先级合并、排序然后返回